
EECS C145B / BioE C165: Image Processing and
Reconstruction Tomography

Lecture 8 (revised)

Jonathan S. Maltz

jon@eecs.berkeley.edu

http://muti.lbl.gov/145b

510-486-6744

1

Topics to be covered

1. Linear models

2. Solving overdetermined systems of equations using the least

squares method

3. Review of the concepts of range and nullspace of a matrix.

4. The singular value decomposition (SVD)

5. Application of the SVD to deconvolution and image

compression.

2

Linear models

• A simple application of a linear model is fitting a straight line to a

set of points.

• Suppose we place a variable voltage x across a 10Ω resistor. When

x = 10V, we measure a current of 1008 mA. When we increase the

voltage to 20V, we read 1987 mA.

• We know we can find the equation of a line:

q(θ, x) = θ1x+ θ2

that fits these points perfectly. How do we know this? Because we

have independent measurements and unknowns.

• q(θ, x) is a linear model, because it is a linear function of all the

elements of the parameter vector:

θ =





θ1

θ2





3

Linear models

• We can find the gradient θ1 and intercept θ2 of this line by solving a

system of simultaneous linear equations for the parameters θ:




y1

y2



 =





x1 1

x2 1









θ1

θ2



 or

y = Fθ

where y is the vector of current measurements.

• The solution is given by:

θ = F
−1
y

• Under what conditions are we guaranteed that F−1 exists?

4

Linear models

• The numerical solution is:

θ =





10 1

20 1





−1 



1008

1987





=





−0.1 0.1

2 −1









1008

1987





=





97.9

29





• Therefore, the current that flows through the resistor versus applied

voltage may be expressed by the model:

q(θ, x) = 97.9x+ 29 mA

• Estimate the resistance of the resistor:

5

Linear models

0 5 10 15 20
0

500

1000

1500

2000
Straight line fit to two data points

x (voltage in V)

y
(c

ur
re

nt
 in

 m
A

)

data points
straight line fit

6

Linear models: More equations than unknowns

• When we measure physical quantities, such as photon counts in

imaging, our measurements are always contaminated by noise.

• In general, the more measurements we make, the lower the effect of

noise on the parameters we estimate.

• In imaging, our parameter vector most often consists of the pixel or

voxel intensities. The quality of an image is therefore dependent on

the number of measurements we make.

• For example, a digital camera image will look grainy if taken under

low light conditions because

.

7

Linear models: More equations than unknowns

• Our confidence in the accuracy of the resistance measurement would

have been greater had we taken more than two measurements.

However, the matrix F would then be non-square.

• When we have more measurements than unknowns, the

number of rows M of F becomes larger than the number of

columns N .

• We can no longer apply the standard matrix inverse to find θ.

• A system of equations that has a non-square F has no unique

solution.

• We must choose one out of the infinite number of solutions that is

optimal in some sense.

8

Linear models: Least-squares

• The least-squares (LS) method is the most commonly used technique for

choosing a specific solution to linear equations defined by singular and

non-square matrices.

• In LS, we minimize the sum of the squared residuals. A residual is

the difference between the prediction of the model and the actual data at

a specific value of x.

0 2 4 6 8
0

2

4

6

8

10

(x
1
 , y

1
)

(x
2
 , y

2
)

(x
3
 , y

3
)

Straight line fit (minimizes sum of squared residuals)

x

y

data points
straight line fit
residuals

9

Linear models: Least-squares

• The previous slide showed a straight line fit to the points: (1, 7), (5, 6) and

(7, 1).

• This problem involves using 3 measurements to determine 2 unknowns.

• The matrix equation defining the problem is:









y1

y2

y3









=









x1 1

x2 1

x3 1













θ1

θ2



 or

y = Fθ

• This equation does not have a unique solution.

• The LS method will show us how to find a pseudoinverse F+ such that:

θLS = F+y

where θLS is the unique solution that minimizes the sum of the squared

residuals.

10

Linear models: Least-squares

• To give the problem a practical context, we begin by solving this

particular LS problem. Later, we will generalize the method to all systems

of equations that have more independent measurements than unknowns.

• Our model is given by:

q(θ, x) = θ1 x+ θ2

• The residual for data point ym at abscissa point xm is then:

rm = ym − q(θ, xm) = ym − (θ1 xm + θ2)

• The sum of squared residuals is:

C =

M
∑

m=1

r2m =

M
∑

m=1

[

ym − (θ1 xm + θ2)

]2

• The LS problem is defined by the expression:

θLS = argmin
θ

C

11

Linear models: Least-squares

• We know that C will be minimized with respect to θ if the M equations:

dC

dθ
= 0

i.e., if both

∂C

∂θ1
= 2

M
∑

m=1

[

ym − (θ1 xm + θ2)
]

(−xm) = 0 and

∂C

∂θ2
= 2

M
∑

m=1

[

ym − (θ1 xm + θ2)
]

(−1) = 0

hold.

• For this problem, the respective equations are:

(− θ1 − θ2)() + (6− 5 θ1 − θ2)() + (1− 7 θ1 − θ2)(−7) = 0

(− θ1 − θ2)() + (6− 5 θ1 − θ2)(−1) + (1− 7 θ1 − θ2)() = 0

which simplify to

75 θ1 + θ2 = 44

θ1 + 3 θ2 = 14

12

Linear models: Least-squares

• We now have a 2× 2 system that we can solve by matrix inversion:




75

3









θ1

θ2



 =





44

14





giving:

θLS =





−0.8929
8.5357





• The straight line equation that minimizes the sum of squared residuals is:

q(θ, x) = −0.8929x+ 8.5357

13

Linear models: Generalizing linear models

We can generalize the linear model as follows:

• Let the matrix F have the general form:
























f1
1 f1

2 · · · f1
N

f2
1 f2

2 · · · f2
N

...
...

. . .
...

...
...

. . . fM−1

N

fM1 · · · fMN−1 fMN

























where N is the dimension of θ and M is the number of data points.

• F is an (M ×N) matrix.

14

Linear models: Generalizing linear models

• When we fitted a straight line in the previous example, F had a very

simple form:

fm1 = xm for all m

fm2 = 1 for all m

giving:

F =









x1 1

x2 1

x3 1









15

Linear models: Generalizing linear models

• In the generalized model, the model functions are:

qm(θ, xm) =
N
∑

n=1

fmn (xm) θn m = 1, 2, . . . ,M

and can be expressed in matrix form as the single vector function

q = Fθ

• Each observation may be thus be modeled as an arbitrary linear

combination of the parameters θn.

• The residual is:

rm =

M
∑

m=1

fmn (xm) θn − ym

and the function to be minimized is:

C =

M
∑

m=1

r2m =

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]2

16

Linear models: Generalizing linear models

• The N partial derivatives are set to zero to perform the minimization:

∂C

∂θk
= 2

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]

fmk (xm) = 0, k = 1, 2, . . . N

• Reversing the order of the summations and rearranging terms gives:

N
∑

n=1

θn

M
∑

m=1

fmn (xm) fmk (xm) =
M
∑

m=1

ymf
m
k (xm), k = 1, 2, . . . N

• It is possible to write out these M equations in matrix form as:

FTFθLS = FTy

17

Linear models: Generalizing linear models

• Multiplying both sides by (FTF)−1 gives:

θLS = (FTF)−1FTy

• Since this solution is of the form:

θLS = F+y

we identify the pseudoinverse that gives the LS solution as:

F+ = (FTF)−1FT

This is called the Moore-Penrose pseudoinverse.

• This pseudoinverse exists as long as FTF can be inverted. When will this

be the case?

• We will see later that the least-squares solution finds that solution in the

range of F that gives:

q = FθLS

such that q is closest to the data vector y.

• We will now review the concepts of range and nullspace.

18

Range and nullspace

• Consider an N ×N matrix F. The set of simultaneous equations:

F θ = y

can be viewed as a mapping of the vector space θ to the vector

space y.

• It is very important for us to be able to establish if a matrix F is

capable of mapping a vector θ onto a known vector y.

• In a practical context, we need to know whether it is possible to find

a unique parameter vector θ that when operated upon by our linear

model matrix F, can reproduce the measured data y.

19

Range and nullspace

• We will demonstrate this by example. We define the matrix:

F =





1 −1
1 1





• We can see that its rows are independent, so it is non-singular. We

can check this by calculating the determinant of F as:

(1× 1)− (−1× 1) = 2 6= 0

• We use this matrix to map the vector θ onto another vector y in <2.

We know y:

y = F θ =





2

1





and find θ by inverting F:

θ =





1.5

−0.5





20

Range and nullspace

The matrix F maps vector θ to another vector y. We say that y is in the

range of F.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

 y

 θ

F

x
1

x 2

21

Range and nullspace

• Now we’ll define the matrix:

F =





1 −1
1 −1





• We can see that its rows are dependent, so it is singular. To

verify this, we calculate the determinant as (1×−1)− (−1× 1) = 0.

• We use this matrix to map the vector θ onto another vector y in <2:

y = F θ =





2

1





• However, we cannot find θ by inverting F.

• Singular matrices have a nullspace. This means that some non-zero

vector θ exists such that:

F θ = 0

• How can we determine whether y is in the range of F?

22

Range and nullspace: The SVD

• Any M ×N matrix can be decomposed into a product of three

matrices that possess special and useful properties.

• This decomposition is called the singular value decomposition

(SVD). The proof that the SVD always exists is beyond the scope of

this course. We will also not discuss the numerical methods involved

in finding the SVD.

• The SVD decomposition is given by:

F = USV
T

where:

• The N columns of U, the un are orthonormal:

u
T
k ul = δ(k − l)

• Similarly for the N columns of V, vn:

v
T
k vl = δ(k − l)

23

Range and nullspace: The SVD

• When M ≥ N , the matrix S is N ×N and diagonal and contains the

N singular values of F.

• The M ×N matrix U contains the N left singular vectors.

• The N ×N matrix V contains the N right singular vectors.

• The columns of U for which the corresponding singular values are

non-zero span the range of F.

• The columns of V for which the corresponding singular values are

zero span the nullspace of F.

24

The SVD

• As an example, we take the SVD of the non-singular matrix F:

F =





1 −1
1 1





= USV
T

=





1√
2

− 1√
2

1√
2

1√
2









√
2 0

0
√
2









1 0

0 1





• What can we say about the dimension of the range of F?

• What can we say about the dimension of the nullspace of F?

25

The SVD

The two left singular vectors u1 and u2 have corresponding non-zero singular

values, and so define an orthonormal basis for the range of F. Thus, all

vectors in <2 that can be represented as a linear combination of these vectors

are in the range of F. Since this basis spans <2, every vector in <2 is in the

range of F.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

 y

 θ

F

x
1

x 2

 u
1 u

2

σ
2
 ≈ 1.41

σ
1
 ≈ 1.41

26

The SVD

We now show how the vector y can be expressed in terms of the

orthonormal basis defined by u1 and u2.

• Currently, y is expressed in terms of the Cartesian basis defined by

e1 and e2. These are the unit vectors along the x1 and x2 axes:

y = 2 e1 + 1 e2

We wish to reexpress it in terms of u1 and u2:

y = k1u1 + k2u2

We find k1 by taking the dot product of y and u1:

k1 = u
T
1 y =

[

1√
2

1√
2

]





2

1



 = 2.121

27

The SVD

• Similarly for k2:

k2 = u
T
2 y =

[

− 1√
2

1√
2

]





2

1



 = −0.707

So, y can be fully expressed as a linear combination of the

orthonormal basis for the range of F as:

y = 2.121u1 − 0.707u2

28

The SVD

• Now we decompose the singular matrix:

F =





1 −1
1 −1





= USV
T

=





1√
2

− 1√
2

1√
2

1√
2









2 0

0 0









1√
2

− 1√
2

− 1√
2

− 1√
2





• What can we say about the dimension of the range of F?

• What can we say about the dimension of the nullspace of F?

• Is the vector y = [2 1]T in the range of F?

29

The SVD

• When F was non-singular, the SVD gave us the ability to express y

in terms of the basis vectors of the range of F:

y =

[

N
∑

n=1

y · un
]

un

• When F is singular or non-square, we can find the vector q in the

range of F that is closest to y using:

q =

[

N′

∑

n=1

y · un
]

un

where N ′ is the number of non-zero singular values.

• If the distance between y and q:

r = ‖y − q‖

is zero, then y is in the range of F.

30

The SVD

The first left singular vector u1 has a corresponding non-zero singular value.

However u2 does not and so is not a basis vector for the range of F.

Consequently, instead of having a range that is the whole plane in <2, the

range of F is only the line defined by u1. Since y is not a multiple of u1, it is

not in the range of F. We can see this also because ‖y − q‖ 6= 0.

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

 u
1 u

2

 y

 θ

 q = y ⋅ u
1

σ
2
 = 0

σ
1
 = 2

x

y

31

The SVD

We now show how the vector q can be expressed in terms of the orthonormal

basis defined by u1 by finding k1 in:

q = k1u1

Taking the dot product of y and u1:

k1 = uT1 y =
[

1√
2

1√
2

]





2

1



 = 2.121

Thus:

q = 2.121u1 + 0u2

The length of the difference vector r is:

‖r‖ =
√

(y − q)T (y − q) =

√

√

√

√

√

[

(2− 2.121) (1 + 0)
]





2− 2.121

1 + 0





= 1.007 6= 0

So y is not in the range of F.

32

The SVD

• It can be shown that the orthogonal projection of y onto u1:

q = y · u1

is related to the LS solution by:

q = F θLS

• We can get a valuable geometric interpretation of “minimizing the

square of the residual” this from this example.

• q is that vector along u1 closest to the data vector y, and θLS is

the parameter vector that gives it to us.

33

The SVD

• The dotted line in the diagram is the vector:

r = y − q

and this is the residual vector, or the difference between the linear

model and the data. The LS solution minimizes the squared norm of

this residual:

min
θ

‖r‖2

which is identical to minimizing the norm of the residual

min
θ

‖r‖

which is what the SVD gives us as a solution.

• Why are these two minimizations equivalent?

34

SVD and least squares equivalence

To minimize the sum of squared residuals in the least squares

formulation, we minimized:

C =

M
∑

m=1

r2m =

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]2

We know that θLS is the solution that minimizes C.

To minimize the norm of the residual, we would minimize:

C′ =

√

√

√

√

M
∑

m=1

r2m =

√

√

√

√

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]2

If we can show that θLS is the unique minimizer of C ′, then the two

minimizations are equivalent.

35

SVD and least squares equivalence

Taking the derivative with respect to θk gives

∂C′

∂θk
=

1

2

[

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]2]− 1
2

×

2

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]

fmk (xm) = 0, k = 1, 2, . . . N

Now recall:

∂C

∂θk
= 2

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]

fmk (xm) = 0, k = 1, 2, . . . N

36

SVD and least squares equivalence

So

∂C′

∂θk
=

1

2

[

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]2]− 1
2
∂C

∂θk

The first factor of cannot be zero unless:

M
∑

m=1

[

N
∑

n=1

fmn (xm) θn − ym

]2

is infinite. In this case, C ′ would not be minimized. Therefore, the same

unique θLS minimizes C and C ′ ¥

37

The SVD of an overdetermined non-square matrix

• We define the matrix:

F =









1 −1
1 1

2 1









• We can see than F describes a system that has more equations (3)

than unknowns (2).

• We can use the SVD to determine the range of F.

• We will try to determine whether the vector:

y = F θ =









2

0

1









is in the range of F.

38

The SVD of an overdetermined non-square matrix

• We decompose F using the SVD:

F =









1 −1
1 1

2 1









= USVT

=









0.1690 −0.9487
0.5071 0.3162

0.8452 0.0000













2.6458 0

0 1.4142









0.8944 0.4472

−0.4472 0.8944





• Even though F is a mapping from 2 to 3 dimensions, we see it has only

two left singular vectors spanning its range. Therefore, it maps the entire

2D plane into a 2D plane inside a 3D space.

• Consequently, not every vector in <3 is in the range of F.

39

The SVD of a overdetermined non-square matrix

• Is

y =









2

0

1









in the range of F?

• We calculate q as:

q =

[

2
∑

n=1

y · un
]

un

= 0.8452u1 − 1.5811u2

= 0.8452









0.1690

0.5071

0.8452









− 1.5811









−0.9487
0.3162

0.0000









=









1.6429

−0.0714
0.7143









40

The SVD of a overdetermined non-square matrix

• We now calculate the residual vector r:

‖r‖ =

√

√

√

√

√

√

√

[

(2− 1.6429) (1 + 0.0714) (0− 0.7143)
]









(2− 1.6429)

(1 + 0.0714)

(0− 0.7143)









= 1.3363 6= 0

So y is not in the range of F, but we have found the closest solution in

the range of F, which is q.

41

The SVD of a overdetermined non-square matrix

Both left singular vectors have corresponding non-zero singular values.

However, since the range of F is two dimensional, all vectors in the 2D real

plane get mapped to another 2D plane in <3. Since y is not in this plane, it is

not in the range of F. From this view, we can see that q is a vector in the plane

defined by u1 and u2. It is the orthogonal projection of y onto this plane.

−1
0

1
2

−1

0

1

0

0.5

1

 q

 θ

x
1

 y

 u
1

x
2

 u
2

x 3

42

The SVD of an row rank-deficient non-square matrix

• We define the matrix:

F =









1 −1
1 1

1 −1









• We can see than F describes a system that has more equations (3)

than unknowns (2).

• We see that row 1 is the same as row 3. This type of matrix is

termed row rank-deficient because not all the rows are

independent.

43

The SVD of an row rank-deficient non-square matrix

• We can use the SVD to find the range of F.

• We will try to determine whether the vector:

y = F θ =









2

0

1









is in the range of F.

44

The SVD of an row rank-deficient non-square matrix

• We decompose F using the SVD:

F =









1 −1
1 1

1 −1









= USVT

=









1√
2

0

0 −1
1√
2

0













2 0

0
√
2









1√
2

− 1√
2

− 1√
2

− 1√
2





• Even though F is a mapping from 2 to 3 dimensions, we see it has only

two singular vectors spanning its range. Therefore, it maps the entire 2D

plane into a 2D plane inside a 3D space.

• Consequently, not every vector in <3 is in the range of F.

45

The SVD of an row rank-deficient non-square matrix

• Is

y =









2

0

1









in the range of F?

• We calculate q as:

q =

[

2
∑

n=1

y · un
]

un

=
√
2u1 − 1u2

=
√
2









1√
2

0

1√
2









− 1









0

−1
0









=









1

1

1









46

The SVD of an row rank-deficient non-square matrix

• And

‖r‖ =

√

√

√

√

√

√

√

[

(2− 1) (1− 1) (0− 1)
]









(2− 1)

(1− 1)

(0− 1)









=
√
2 6= 0

So y is not in the range of F, but we have found the closest solution in

the range of F, which is q.

47

The SVD of an row rank-deficient non-square matrix

Both left singular vectors have corresponding non-zero singular values.

However, since the range of F is two dimensional all vectors in the 2D real

plane get mapped to another 2D plane in <3. Since y is not in this plane, it is

not in the range of F. q is a vector in the plane defined by u1 and u2. It is the

orthogonal projection of y onto this plane.

−1
0

1
2

−1
0

1

0

0.5

1

 F+

x
1

 y

 θ

 u
1

 u
2

 q = y ⋅ u
1

x
2

x 3

48

The SVD of a matrix with more columns than rows

• We define the matrix:

F =





1 −1 2

1 1 2





• We can see than F describes a system that has more unknowns (3)

than equations (2).

49

The SVD of a matrix with more columns than rows

• We can use the SVD to find the range of F.

• We will try to determine whether the vector:

y = F θ =





3

2





is in the range of F.

50

The SVD of a matrix with more columns than rows

• We decompose F using the SVD:

F =





1 −1 2

1 1 2





= USVT

=





0.89 0.45

0.45 −0.90









2.65 0 0

0 1.41 0













0.51 −0.17 0.85

−0.32 −0.95 0.00

−0.80 0.27 0.53









• In this SVD, we see that S is no longer N ×N .

• F is a mapping from 3 to 2 dimensions, and has two singular vectors

spanning its range. Therefore, it maps the entire 3D plane into the 2D

plane <2.

• Every vector in <2 is in the range of F, since it can be represented in

terms of u1 and u2, which span <2.

51

The SVD of an underdeterminednon-square matrix

• To verify this, we ask: Is

y =





3

2





in the range of F?

• We calculate q as:

q =

[

2
∑

n=1

y · un
]

un

= 3.5777u1 − 0.4472u2

= 3.5777





0.8944

0.4472



− 0.4472





0.4472

−0.8944





=





3

2





52

The SVD of an underdeterminednon-square matrix

• And

‖r‖ =

√

√

√

√

√

[

(3− 3) (2− 2)
]





(3− 3)

(2− 2)





= 0

So y is in the range of F. This will be true for any y.

53

The SVD of a matrix with more columns than rows

Both left singular vectors have corresponding non-zero singular values.

Therefore, the entire x1-x2 plane is spanned by the range of F and F can map

any 3D vector θ onto this plane.

−1
0

1
2

−1
0

1

0

0.5

1

 q = y

x
1

 u
2

 θ

 u
1

x
2

x 3

54

Finding the least squares solution using the SVD

• Up to now, we have been finding the closest vector q to y by

projecting y onto the columns of U.

• Generally, we wish to find the solution θLS, as this is the vector of

unknowns. Once we have this solution, it is easy to find q as:

q = FθLS

• Recall that the SVD of F is:

F = USV
T

• What happens if we try to take the inverse of F?

55

Finding the least squares solution using the SVD

• Taking the inverse of both sides gives:

F
−1 = (VT)−1

S
−1
U
−1

= VS
−1
U
T

Recall for a unitary matrix UT = U−1.

• Now, for these inverses to exist, all these matrices must be square,

and all of the singular values on the diagonal of S must be non-zero.

• If any singular value is zero, S−1 will have an infinite element on its

diagonal. This is how the the SVD shows us the singularities that

cause the inverse of F to “blow-up”.

56

Finding the least squares solution using the SVD

• Now, the SVD also tells us that if a singular value is zero, we must

not try to find a solution that has a projection along the associated

column of U. This can be accomplished by setting to zero all

infinite values of S−1. Then we have:

F
† = VW

−1
U
T

where W−1 is the modified version of S−1.

• We will now prove that this pseudoinverse is the same as the

Moore-Penrose pseudoinverse we derived eariler.

57

Finding the least squares solution using the SVD

We can prove that:

θSVD = F
†
y

is equal to:

θLS = F
+
y

by showing that

q = F θSVD

minimizes the sum of squared residuals.

The following proof shows that we cannot add any vector in the range of

F to the residual and get a shorter vector than the residual. If this is so

then q is the closest vector to y in the range of F.

Proof: The residual vector is defined as:

r = (y − q) = (y − F θSVD)

Let us modify θSVD by adding some arbitrary θ′. Then q′ = F θ′ is a

vector in the range of F.

58

Finding the least squares solution using the SVD

We then have:

‖y + q
′ − FθSVD‖

= ‖y + q
′ − F(F†y)‖

= ‖y + q
′ − (USV

T)(VW
−1
U
T)y‖

= ‖q′ − (USW
−1
U
T − I)y‖

=

∥

∥

∥

∥

U
[

U
T
q
′ − (SW−1 − I)UT

y
]

∥

∥

∥

∥

=

∥

∥

∥

∥

U
T
q
′ − (SW−1 − I)UT

y

∥

∥

∥

∥

Let wn be the nth diagonal element of W−1.

• For all n for which wn = 0, the vector un is not part of the range of

F. Since y is in the range, UTy = 0 for all of these values of n.

59

Finding the least squares solution using the SVD

• For example, when N = 3 and there are N ′ = 2 non-zero singular

values:

U
T
y =









uT1

uT2

uT3









y =









uT1 y

uT2 y

uT3 y









=









uT1 y

uT2 y

0









The last element is zero because y is in the range of F and so can be

represented as a linear combination of u1 and u2. Since u3 is

orthogonal to these vectors by the definition of the SVD, uT3 y = 0.

• The diagonal matrix (SW−1 − I) has elements that are either 0 or

−1. The elements are −1 only for wn = 0.

• Therefore the second term:

(SW−1 − I)UT
y = 0

and the norm of the residual is minimized when q′ = 0.

60

Finding the least squares solution using the SVD

• Therefore there is no vector in the range of F closer to y than:

q = FθSVD

Thus, since θSVD is that solution that minimizes the norm (and the

squared norm of the residual, as we proved earlier):

θSVD = θLS

and

F
† = F

+
¥.

61

Finding the least squares solution using the SVD

Using the same example, when N = 3 and there are N ′ = 2 non-zero

singular values:

(SW−1 − I)UT
y

=

















σ1 0 0

0 σ2 0

0 0 0

















1/σ1 0 0

0 1/σ2 0

0 0 0









−









1 0 0

0 1 0

0 0 1

























uT1 y

uT2 y

0









=









1− 1 0 0

0 1− 1 0

0 0 0− 1

















uT1 y

uT2 y

0









=









0

0

0









62

Finding the least squares solution using the SVD

Worked example:

• We already considered the decomposition:

F =





1 −1
1 −1





= USV
T

=





1√
2

− 1√
2

1√
2

1√
2









2 0

0 0









1√
2

− 1√
2

− 1√
2

− 1√
2





• We can now find the pseudoinverse:

F
+ = VW

−1
U
T

=





1√
2

− 1√
2

− 1√
2

− 1√
2









1/2 0

0 0









1√
2

1√
2

− 1√
2

1√
2





63

Finding the least squares solution using the SVD

Worked example:

• We then solve for the parameter vector:

θLS = F
+
y

=





1/4 1/4

−1/4 −1/4









2

1





=





0.75

−0.75





• If we like, we can find the vector q:

q = F θLS =





1.5

1.5





This is exactly the solution we found earlier by orthogonal

projection.

64

Practical use of the SVD

The SVD is very useful for solving many inverse problems. Earlier in the

course we saw how convolution can be formulated as a matrix equation:












































g[0]

g[1]

g[2]

g[3]

g[4]

g[5]

g[6]

g[7]

g[8]













































=













































h[0] 0 0 0 0 0 0

h[1] h[0] 0 0 0 0 0

h[2] h[1] h[0] 0 0 0 0

0 h[2] h[1] h[0] 0 0 0

0 0 h[2] h[1] h[0] 0 0

0 0 0 h[2] h[1] h[0] 0

0 0 0 0 h[2] h[1] h[0]

0 0 0 0 0 h[2] h[1]

0 0 0 0 0 0 h[2]













































































f [0]

f [1]

f [2]

f [3]

f [4]

f [5]

f [6]

































Will will now perform a deconvolution using the SVD.

65

Deconvolution using the SVD

Earlier we convolved the spoken word “recording” (f [n]) with a “cave” impulse

response.

0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1
Spoken word "recording" sampled at 22050Hz

time (s)

f[n
]

0.25 0.3 0.35 0.4 0.45 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

f[n
]

Enlarged view of segment of f[n]

66

Deconvolution using the SVD

The “cave” impulse response h[n] is shown in the lower figure:

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
Impulse response h[n] of anechoic chamber

time (s)

h[
n]

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1
Impulse response h[n] of cave

time (s)

h[
n]

67

Deconvolution using the SVD

Convolution with the kernel gives g[n]:

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1
Spoken word "recording" after going through cave h[n]

time (s)

g[
n]

0.25 0.3 0.35 0.4 0.45 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

g[
n]

Enlarged view of segment of g[n]

68

Deconvolution using the SVD: Implementation

• Inputs:

Original signal f (3201× 1)

Kernel h (661× 1)

• Make Toeplitz matrix H from kernel. H has size (3861× 3201).

• Convolve to get (3861× 1) echo signal:

g = Hf

• Perform SVD on H:

H = U S VT

(3861× 3201) (3861× 3201) (3201× 3201) (3201× 3201)

69

Deconvolution using the SVD

We can plot each singular value of H versus its position on the diagonal of H.

We call this the spectrum of singular values. Singular values are always

ordered so that σn ≥ σn+1. The flatter this spectrum, the better behaved is

the matrix pseudoinverse.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Singular values of H

element of diagonal of S (m)

70

Deconvolution using the SVD: Implementation

• Find the indices for all σn = 0. In practice, we often want to remove

all the small singular values. This is because the inverse of small

singular values is large and makes the solution “blow-up”. In that

case, we find the indices of all σn ≤ σmin

• Let the number of retained singular values be N ′. Then we form the

(N ×N) matrix W−1 that has as diagonal the (N × 1)vector:

w =
[

1

σ1

1

σ2
. . . 1

σ
N′

0 0 . . . 0
]T

71

Deconvolution using the SVD: Implementation

• W−1 has the form:

W−1 =

















































1

σ1
0 0

0 1

σ2
0 · · · · · · · · · · · · 0

.

.. 0
. . .

. . . · · · · · · · · · 0

.

..
.
..

. . .
. . .

. . . · · · · · · 0

..

.
..
.

..

.
. . . 1

σ
N′

. . . · · · 0

...
...

...
...

. . . 0
. . . 0

.

..
.
..

.

..
.
..

.

..
. . .

. . .
.
..

0 0 0 0 0 0 0 0

















































• Because only the first N ′ elements of the diagonal are zero, we need only

use the first N ′ columns of U and V when calculating F+ = VW−1U.

• For the deconvolution example, none of the singular values is zero, so all

N ′ = N

72

Deconvolution using the SVD: Implementation in Matlab

% code to perform deconvolution using the SVD

% given: 1. Toeplitz convolution matrix H

% 2. Convolved signal g

% output: Deconvolved signal fDeconv

[U,S,V] = svd(H,0); % decompose H so that H = USV’

% Second argument = 0 gives SVD

% with MxN sized matrix U which

% is what we want.

s = diag(S); % put all the singular values into a vector

[M,N] = size(H);

73

Deconvolution using the SVD: Implementation in Matlab

tol = max(M,N) * max(s) * eps; % Set minimum retained singular

% value equal to the maximum

% dimension of H times

% the maximum singular value

% times the numeric precision

% of the computer.

% Numbers smaller than

% tol are in effect

% zero on the particular

% computer being used.

ind = find(s > tol); % find the indices of the singular

% values that we wish to keep

74

Deconvolution using the SVD: Implementation in Matlab

NPrime = length(ind); % get the number of retained values N’

WInvDiag = zeros(size(s)); % make a blank diagonal for W’s inverse

% place the inverse of the retained SVs in the vector

% that will become the diagonal of W inverse

WInvDiag(1:NPrime) = ones(NPrime,1) ./ s(1:NPrime);

WInv = diag(WInvDiag); % make this diagonal matrix with

% 1/sv_1 1/sv_2 ... 1/sv_N’ 0 ... 0

% on diagonal

% get the pseudoinverse of H

HPlus = V(:,1:NPrime)*WInv*U(:,1:NPrime)’;

% note the use of ’ instead of .’. We use the

% Hermitian conjugate instead of the transpose

% so the pseudoinverse can be used for complex

% matrices too.

fDeconv = HPlus * g; % get the deconvolved signal (unknown vector theta)

75

Deconvolution using the SVD

0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5
Original time series f[n]

time (s)
f[n

]
0.25 0.3 0.35 0.4 0.45 0.5

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

f[n
]

Enlarged view of segment of f[n]

0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5
Deconvolved time series f’[n]

time (s)

f’[
n]

0.25 0.3 0.35 0.4 0.45 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

f’[
n]

Enlarged view of segment of f’[n]

76

Deconvolution using the SVD

• The SVD does a near perfect job of deconvolving the echo

signal.

• All long distance telephone lines have echo-cancellers that

perform similar deconvolutions. However, they cannot use the

SVD to do this because it is too slow.

• This deconvolution took over 10 minutes on a Pentium 4

2.4GHz processor.

77

Approximation of matrices using the SVD

• The singular values tell us the relative importance of the singular

vectors pairs (un, vn).

• The SVD can be rewritten as a series:

F =
N
∑

n=1

σnunv
T
n

Here, each outer product unv
T
n is a matrix that has the same size as

F.

• Since both u and v are unit vectors, the larger the value of σn, the

larger is the contribution of one of these matrices to the series.

• One of the best (but slow) ways we can compress an image is to use

only the first few terms in this series (Recall σn ≥ σn+1).

78

Approximation of matrices using the SVD

• Let F be a matrix containing any image. We can approximate the

image with the first N ′ terms as:

F ≈
N′

∑

n=1

σnunv
T
n

• Let’s first get an idea of what the series terms look like.

• Then we’ll sum these terms up to increasing values of N ′ and watch

what happens.

79

Approximation of matrices using the SVD

Matrix to be approximated (or image to be compressed)

0

10

20

30

40

50

60

70

80

Original image F

80

Approximation of matrices using the SVD

0

10

20

30

40

50

60

70

80

90
Term 1 in the SVD expansion of F

−50

−40

−30

−20

−10

0

10

20

30

40

50
Term 2 in the SVD expansion of F

−40

−30

−20

−10

0

10

20

30

40

Term 3 in the SVD expansion of F

−40

−30

−20

−10

0

10

20

30

40

Term 4 in the SVD expansion of F

81

Approximation of matrices using the SVD

0

10

20

30

40

50

60

70

80

90
Sum of first 1 terms of the SVD expansion of F

−20

0

20

40

60

80

100Sum of first 2 terms of the SVD expansion of F

−20

0

20

40

60

80

100
Sum of first 3 terms of the SVD expansion of F

−20

0

20

40

60

80

Sum of first 4 terms of the SVD expansion of F

82

Approximation of matrices using the SVD

0

20

40

60

80

100Sum of first 10 terms of the SVD expansion of F

0

20

40

60

80

100
Sum of first 15 terms of the SVD expansion of F

0

20

40

60

80

100Sum of first 20 terms of the SVD expansion of F

0

20

40

60

80

100Sum of first 25 terms of the SVD expansion of F

83

Approximation of matrices using the SVD

• Since F is a (128× 128) image, we could have summed all 128 terms

in the series.

• However, we see that by the time we sum up only the first 25 of

these terms, the image looks very similar to the original.

• The original image required storage of 128× 128 = 16384 numbers.

• The compressed image requires storage of the 25 un vectors of

length 128, the 25 vn vectors of length 128 and the 25 singular

values. The storage requirement is thus 50× 128 + 25 = 6425.

• We have compressed the image by a factor of 2.55, while not

severely compromising image quality.

• How can we decide how many terms to use?

84

Approximation of matrices using the SVD

• We can compare two matrices A and B, both having I rows and J

columns, by calculating the sum of the squared differences (SSD):

C(A,B) =
I
∑

i=1

J
∑

j=1

(Aij −Bij)
2

where Aij is the element at the ith row and jth column of A.

• Let FN′ be the approximation to F obtained when N ′ elements of

the series are summed.

• We will plot C(F,FN′) versus N ′.

85

Approximation of matrices using the SVD

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

6 SSD between image and its approximations

N’

S
S

D

This graph tells us not much improvement will be observed if we sum more

than ≈ 50 terms.

86

Approximation of matrices using the SVD

Now we visually compare F50 with F:

0

10

20

30

40

50

60

70

80

Original image F

0

10

20

30

40

50

60

70

80

90
Sum of first 50 terms of the SVD expansion of F

87

Approximation of matrices using the SVD

Finally, we look at the spectrum of singular values:

0 50 100 150
0

1000

2000

3000

4000

5000
Spectrum of the singular values of F

n
• We see that the shape of this graph is similar to the SSD curve. The

singular value spectrum tells us that the singular vectors whose index n is

more than ≈ 50 do not contribute significant “energy” to the image.

• The SVD is excellent for image compression as it finds the most important

independent basis vectors for a particular image. It also provides these

vectors in order of decreasing importance. In what applications is this a

useful property?

88

Approximation of matrices using the SVD: Matlab

implementation

load mri % load Matlab’s MRI image demo

F = double(D(:,:,1,5)); % select a 2D slice

% F is 128x128

fnts = 18; % font size variable

figure(1)

clf reset

set(gca,’fontsize’,fnts)

imagesc(F);

title(’Original image F’)

axis off

axis equal

colormap(gray)

colorbar

orient portrait

print -depsc2 -f1 /projects/courses/145b/eps/imag_svd_im.eps

[U,S,V] = svd(F,0);

89

s = diag(S);

imExpan = zeros(size(F));

NPrime = 100; % number of terms in our series

ssd = [];

for n = 1:NPrime

u = U(:,n);

v = V(:,n);

im(:,:,n) = s(n) * u*v’; % evaluate this series element

imExpan = imExpan + im(:,:,n); % add this term to series

% calculate the SSD

ssd(n) = sum((imExpan(:) - F(:)).^2);

if (n < 26) | (n == 50) % plot only the approximations we

90

% want to see

figure(2)

clf reset

set(gca,’fontsize’,fnts)

imagesc(im(:,:,n))

axis off

axis equal

colormap(gray)

colorbar

orient portrait

title([’Term ’ num2str(n) ’ in the SVD expansion of F’])

print(’-depsc2’,’-f2’, ...

[’/projects/courses/145b/eps/imag_svd_ser_’ ...

num2str(n) ’.eps’])

figure(3)

clf reset

set(gca,’fontsize’,fnts)

imagesc(imExpan)

axis off

axis equal

91

colormap(gray)

colorbar

orient portrait

title([’Sum of first ’ num2str(n) ...

’ terms of the SVD expansion of F’])

print(’-depsc2’,’-f3’, ...

[’/projects/courses/145b/eps/imag_svd_im_’ ...

num2str(n) ’.eps’])

end % if n < 26

end % for n

figure(4)

subplot(1,1,1)

set(gca,’fontsize’, 18)

hs = stem(ssd);

set(hs, ’color’, ’r’);

set(hs, ’linewidth’, 3);

orient portrait

title([’SSD between image and its’ ...

’ approximations’])

92

xlabel(’N’’’)

ylabel(’SSD’)

print(’-depsc2’,’-f4’, [’/projects/courses/145b/eps/’ ...

’ imag_svd_vsnpr.eps’])

figure(5)

clf reset

set(gca,’fontsize’, 20)

hs = stem(s);

set(hs, ’color’, ’r’);

set(hs, ’linewidth’, 1);

orient portrait

title(’Spectrum of the singular values of {\bf F}’)

xlabel(’n’)

print(’-depsc2’,’-f5’, ...

’/projects/courses/145b/eps/imag_svd_spectrum.eps’)

93

Optional reading

1. “Numerical Recipes in C”. Press, Teukolsky, Vetterling and

Flannery, 2nd Edition (1995) pp. 59-70

2. “Matrix Computations”. Golub and Van Loan, Third Edition

(1996) pp. 70-75, 80, 253-264,

3. Jain, pp. 4-6, 176-180, 299-301.

94

